Например, Бобцов

Применение FN-корректора с целью повышения качества классификации аудиособытий

Аннотация:

Предмет исследования. Рассмотрена проблема классификации акустических событий, активно применяемых в решениях задач безопасного города, умного дома, IoT устройств, а также для детектирования опасных ситуаций на производстве. Предложено решение повышения точности классификаторов без изменения их структуры и сбора дополнительных данных. Основным источником данных для экспериментов выбран открытый набор данных TUT Urban Acoustic Scenes 2018, Development Dataset. Метод. Предложен способ увеличения точности классификации аудиособытий с помощью использования FN-корректора. FN-корректор представляет собой линейный классификатор и работает в два этапа: преобразование пространства признаков в линейно-разделимое пространство и линейное отделение одного класса от другого. В случае применения корректора классы — типы ответов исходного классификатора: положительный (P), отрицательный (N), ложноположительный (FP) и ложноотрицательный (FN). В результате возможно обучить два типа корректоров FP и FN, которые работают как бинарные линейные классификаторы и разделяют ответы на положительные/ ложноположительные и отрицательные/ложноотрицательные соответственно. Выполнены эксперименты, где в качестве исходного классификатора использована сверточная нейронная сеть VGGish. Аудиосигнал преобразован в спектрограмму и передан на вход нейронной сети, которая формирует признаковое описание спектрограммы и производит классификацию. Основные результаты. В качестве примера демонстрации повышения точности классификации выбраны два «спутанных» класса. С помощью признакового описания аудиозаписей этих классов построен, обучен FN-корректор и подключен к исходному классификатору. Ответ от классификатора, а также признаковое описание передано на вход корректора. Далее корректор переводит пространство признаков в новый базис (в линейно разделимое пространство) и классифицирует ответ классификатора, таким образом «отвечает» на вопрос, ошибается ли исходный классификатор на таком векторе признаков или нет. Если исходный классификатор ошибся, то его ответ изменяется корректором на противоположный. Если нет — ответ остается тем же самым. Результаты экспериментов продемонстрировали снижение уровня спутывания классов и, соответственно, увеличение точности исходного классификатора без изменения его структуры и без сбора дополнительного набора данных. Практическая значимость. Полученные результаты могут быть использованы на устройствах IoT, имеющих существенные ограничения по размеру используемых моделей, а также при решении проблем доменной адаптации, актуальной в задачах аудиоаналитики.

Ключевые слова:

Статьи в номере